Machine Learning (Stanford University) (coursera.org)

Посетить учебник
оплаченный
Top Three Medal #1 из общего количества 131 Machine Learning Учебники и курсы 11.2k+ Просмотры

податель

Viktor Yanush
1310 точки

воспитатель

Andrew Ng
1050 точки

Почему зрителям нравится этот урок?

Качество контента

Квалифицированный инструктор

Качество видео

Глубина курса и охват

Курс Pace

Напишите свой обзор этого урока:

Вы также можете задавать вопросы или предоставлять любую информацию, которая может быть полезна людям, проходящим этот курс..

Kunal Vats
Kunal Vats 16 точки
2 года назад

Any prerequisite to start this course?

Ashwin Jayaprakash
Ashwin Jayaprakash 16 Points

@kunal-vats Its explained in the introduction.

Khushal Sharma
Khushal Sharma 10 точки
3 года назад

does this course have programing or only algo's?

Saurabh Hooda
Saurabh Hooda 76910 Points

@khushal-sharma This is from the course syllabus: "This course includes programming assignments designed to help you understand how to implement the learning algorithms in practice."

Robert Martin
Robert Martin 48 Points

@khushal-sharma It does have programming, but in Octave/Matlab, which nobody really uses for machine learning.

Doydle Llama
Doydle Llama 16 точки
3 года назад

Great resource, professor explains things very well, and the assignments are relevant and challenging.

Rayan Potter
Rayan Potter 10 точки
1 месяц назад

Machine Learning (ML) field have huge scope in multiple fields to help AI developers train the various types of models and provide an automated solution to different people around the world. Apart from promising sectors like @healthcare, @automotive, @retail and agriculture, ML provides a great opportunity to @machinelearning engineers utilize the bunch of data and train the machine predict in the same way.

Senthil Nathan
Senthil Nathan 10 точки
3 месяца назад

hi

Sahana Ks
Sahana Ks 12 точки
1 год назад

Is it a self paced course?

Saurabh Hooda
Saurabh Hooda 76910 Points

@sahana-ks It's not a self paced course. You need to enroll in the course and then for the best output go with the flow of the course. However, once you've enrolled you will have access to all the materials forever so you can access those and revisit those at your pace.